Cloud 3D - MSG/SEVIRI Finetuning Dataset
MSG/SEVIRI finetuning subset from the Global 3D Cloud Reconstruction Dataset. Contains colocated pairs of Meteosat Second Generation (MSG) SEVIRI geostationary imagery with CloudSat radar profiles for supervised 3D cloud structure reconstruction. Each sample includes: multispectral SEVIRI imagery (12 spectral channels + satellite/solar angles), CloudSat vertical profiles as ground truth, and a colocation mask indicating valid CloudSat footprint pixels. 256x256 pixel patches in Cloud-Optimized GeoTIFF format. Temporal coverage spans 2006-2020, providing the longest continuous record among the three geostationary sensors in the Cloud3D dataset.
Version: 0.1.0
License: CC-BY-4.0
Keywords: cloud microphysics, 3d reconstruction, geostationary satellites, MSG, SEVIRI, Meteosat, CloudSat, remote sensing, tropical cyclones, deep learning
Tasks: regression, foundation-model
Dataset Overview
Partitions: 104 files
Spatial coverage: [-50.78, -42.57, 50.37, 42.62] (WGS84)
Temporal coverage: 2006-06-12 to 2020-08-26
Root: FOLDER (181,653 samples)
Hierarchy:
- Level 1: FILE → FILE (363,306 samples)
LEVEL0
LEVEL1
Usage
Python
R
Julia
Data Providers
EUMETSAT — producer
https://www.eumetsat.int
European Space Agency (ESA) — licensor
https://www.esa.int
source.coop — host
https://source.coop
Dataset Curators
Publications & Citations
If you use this dataset in your research, please cite:
DOI: 10.48550/arXiv.2511.04773
Ermis, S., Aybar, C., Freischem, L., Girtsou, S., Bintsi, K.-M., Diaz Salas-Porras, E., Eisinger, M., Jones, W., Jungbluth, A., & Tremblay, B. (2025). Global 3D Reconstruction of Clouds & Tropical Cyclones. Tackling Climate Change with Machine Learning Workshop at NeurIPS 2025.
Primary publication describing the dataset and methodology
BibTeX
Generated with ❤️ using TacoToolbox v0.23.3