Global Risk/Resilience Index - Supporting Data
This dataset collects extracts from global, open datasets relating to climate hazards and infrastructure systems.
Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.
Hazards:
- coastal and river flooding (Ward et al, 2020; Baugh et al, 2024)
- extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
- tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)
Exposure:
- population (Schiavina et al, 2023)
- built-up area (Pesaresi et al, 2023)
- roads (OpenStreetMap, 2025)
- railways (OpenStreetMap, 2025)
- power plants (Global Energy Observatory et al, 2018)
- power transmission lines (Arderne et al, 2020)
Contextual information:
- elevation (European Union and ESA, 2021)
- land-use and land cover (Copernicus Climate Change Service and Climate Data Store, 2019)
- administrative boundaries from geoBoundaries (Runfola et al., 2020)
References
- Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
- Baugh, Calum; Colonese, Juan; D'Angelo, Claudia; Dottori, Francesco; Neal, Jeffrey; Prudhomme, Christel; Salamon, Peter (2024): Global river flood hazard maps. European Commission, Joint Research Centre (JRC) [Dataset] PID: data.europa.eu/89h/jrc-floods-floodmapgl_rp50y-tif
- Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
- Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
- Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.006f2c9a (Accessed on 09-AUG-2024)
- Copernicus DEM - Global Digital Elevation Model (2021) DOI: 10.5270/ESA-c5d3d65 (produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved)
- Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
- Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
- Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
- OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2025) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
- Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
- Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, et al. (2020) geoBoundaries: A global database of political administrative boundaries. PLoS ONE 15(4): e0231866. DOI: 10.1371/journal.pone.0231866.
- Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
- Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
- Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
Funding
This research received funding from the FCDO Climate Compatible Growth Programme.
Disclaimer
The views expressed in this website do not necessarily reflect the UK government's official policies.